<form id="vtjjv"></form>

    <noframes id="vtjjv"><address id="vtjjv"><nobr id="vtjjv"></nobr></address>

    <noframes id="vtjjv"><form id="vtjjv"><th id="vtjjv"></th></form>
    <noframes id="vtjjv"><address id="vtjjv"><menuitem id="vtjjv"></menuitem></address>

    <address id="vtjjv"><listing id="vtjjv"><menuitem id="vtjjv"></menuitem></listing></address>
    <noframes id="vtjjv">

    <address id="vtjjv"></address>

    技術文章

    TECHNICAL ARTICLES

    當前位置:首頁技術文章德國弗萊貝格電池片PID測試儀PIDcon bifacial技術

    德國弗萊貝格電池片PID測試儀PIDcon bifacial技術

    更新時間:2023-06-27點擊次數:1027

    2010年以來,潛在的誘導退化被認為是導致模塊故障的主要原因之一。利用弗勞恩霍夫CSP開發的新技術,以及弗萊貝格儀器公司的臺式工具PIDcon,可以對太陽能電池和微型組件的PID敏感性進行測試,現在已經投入市場。 

    了解更多關于PID的原因以及如何研究太陽能電池、微型模塊和封裝材料的敏感性。

    PID-s的物理性質

    電勢誘導退化(PID)是在晶體硅組件中觀察到的較高危險的退化現象之一。在了解分流型PIDPID-s)的基本機制方面已經取得了很大進展。

    PID use-11.png


    PID-s的物理性質

    在現場,模塊中的前玻璃表面和太陽能電池之間可能會出現較大的電位,硅太陽能電池的p-n結會發生分流,從而導致電阻和功率輸出下降。

    以下模型是由[1]提出的:

    模塊中存在的高場強導致Na+漂移通過SiNx層。鈉離子在SiNx/Si界面(SiOx)橫向擴散,并裝飾了堆疊故障。pn結通過高度裝飾的堆積斷層的缺陷水平被分流(過程1),另外,由于耗盡區的缺陷狀態的重組過程,J02增加(過程2)。請注意,Na離子應該是來自Si表面而不是玻璃。

    因此,模塊的易感性主要取決于SiNx層以及玻璃和EVA箔的電阻率。


    參考文獻:

    [1] V. Naumann et al., The role of stacking faults for the formation of shunts during potential induced degradation (PID) of crystalline Si solar cells, Phys. Stat. Solidi RRL 7, No. 5 (2013) 315-318

    掃一掃,關注公眾號

    服務電話:

    021-34685181 上海市松江區千帆路288弄G60科創云廊3號樓602室 wei.zhu@shuyunsh.com
    Copyright © 2025束蘊儀器(上海)有限公司 All Rights Reserved  備案號:滬ICP備17028678號-2
    老师洗澡喂我吃奶的视频